Abstract

The frequency distribution of habit plane variant (HPV) clusters and the deviation from twin orientation relationships (ORs) at the junction plane (JP) are investigated by transmission electron microscopy together with theoretical evaluation of the kinematic compatibility (KC) at the JP in a β-titanium shape memory alloy. Even though there are more than 10 types of possible HPV clusters, only three types are formed. V-shaped couplings of HPVs by {111} type I twins (VI: 49%) and by ⟨211⟩ type II twins (VII: 42%) are the predominant types. A triangular morphology due to coupling of {111} type I twins is observed with a frequency of only 9%. These preferred morphologies are well explained by the degree of incompatibility (the rotation necessary for compatible connection of HPVs). The exact twin OR and KC are maintained at the JP in a VI cluster instead of KC at the habit plane (HP), whereas the JP in a VII cluster is incompatible and the ⟨211⟩ type II twin OR shows slight deviation at the JP by about 0.4°. The competition between KC at the JP and KC at the HP (invariant plane) is responsible for the frequency distribution of HPV clusters and the character of the interfaces in the self-accommodation microstructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.