Abstract

Solitons are fascinating entities that are known to exist in many different branches of physics. They represent self-localized wave packets that do not expand while propagating in a dispersive environment. The localization (self-trapping) relies on a nonlinear effect, and it can result from a variety of nonlinear mechanisms. In general, solitons exhibit a rich, particlelike behavior that is clearly manifested during their interactions (collisions). Despite their diversity, solitons are a universal phenomenon and thus share many common features. In their most frequent realization, these particlelike wave packets are fully coherent entities. In this case, given the soliton phase at a particular location as well as the frequency of the carrier wave, one can deterministically predict the phase everywhere (at any given point in space and time) upon the soliton.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.