Abstract

Global navigation satellite system reflectometry (GNSS-R) receivers produce delay-Doppler maps (DDMs) by incoherently integrating coherent integration results. Due to system dynamics, during incoherent integration, the receiver aligns each coherent result by tracking the delay and Doppler of the specular point. This is known to cause a blurring of the spatial footprint of the Woodward ambiguity function (WAF) on the reflecting surface. In this paper, we demonstrate that the blurring of the WAF varies over the glistening zone (GZ), and even if a fixed point on the ground is tracked, blurring still occurs. We derive the expressions for the delay and Doppler change rates over the GZ and then predict the error introduced by range walk for typical GNSS-R scatterometry configurations. We find that ≈6 dB of loss is expected for a point scatterer near the edge of the GZ when a fixed point on the surface is tracked. The incoherent range walk compensation (IRWC) method is then presented for GNSS-R receivers to mitigate this loss. The IRWC method focuses the power in the DDM to the isodelay and iso-Doppler configuration occurring at the midpoint of the integration time. DDMs produced by tracking a fixed point with and without IRWC are simulated, and errors are found to be in agreement with those predicted. Spatial domain GNSS-R products will be improved with IRWC. Target detection will benefit from a larger usable swath, allowing longer tracking and detection times as a result of the increased target to clutter and noise ratio. At the same time, imaging applications will no longer suffer from a spatially variant blurring of the WAF, which limits the resolution of the estimated products. IRWC is shown to mitigate the range migration losses and improve the SNR of an imaging GNSS-R receiver by ≈6 dB near the edge of the GZ.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call