Abstract

We show that free-by-free groups satisfying a homological criterion, which we call excessive homology, are incoherent. This class is large in nature, including many examples of hyperbolic and non-hyperbolic free-by-free groups. We apply this criterion to finite index subgroups of F 2 ⋊F n to show incoherence of all such groups, and to other similar classes of groups. Furthermore, we show that a large class of groups, including free-by-free, surface-by-surface, and finitely generated-by-RAAG, algebraically fiber if they have excessive homology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.