Abstract
Abstract The objective of this work was to compare the use of noninformative and informative priors in Bayesian models, as well as to evaluate the viability of including informative priors in the estimation of variance components and genetic values in soybean breeding programs. The used phenotypic data refer to the evaluation of 80 soybean genotypes in ten environments over three years. For each evaluated crop year, informative and noninformative priors were used, and the parameters were estimated using the Gibbs sampler algorithm. Parameter estimates from the previous crop year were used as prior information for the next evaluated crop year. The goodness-of-fit was calculated using the deviance information criterion (DIC). Selective accuracy showed the highest values for the models chosen through DIC for both crop years. However, the intervals of the highest posterior density are narrower for all models that adopted informative priors. Adding information into Bayesian inference does not always result in a better model fitting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.