Abstract

An explicit model management framework is introduced for predictive Groundwater Levels (GWL), particularly suitable to Observation Wells (OWs) with sparse and possibly heterogeneous data. The framework implements Multiple Models (MM) under the architecture of organising them at levels, as follows: (i) Level 0: treat heterogeneity in the data, e.g. Self-Organised Mapping (SOM) to classify the OWs; and decide on model structure, e.g. formulate a grey box model to predict GWLs. (ii) Level 1: construct MMs, e.g. two Fuzzy Logic (FL) and one Neurofuzzy (NF) models. (iii) Level 2: formulate strategies to combine the MM at Level 1, for which the paper uses Artificial Neural Networks (Strategy 1) and simple averaging (Strategy 2). Whilst the above model management strategy is novel, a critical view is presented, according to which modelling practices are: Inclusive Multiple Modelling (IMM) practices contrasted with existing practices, branded by the paper as Exclusionary Multiple Modelling (EMM). Scientific thinking over IMMs is captured as a framework with four dimensions: Model Reuse (MR), Hierarchical Recursion (HR), Elastic Learning Environment (ELE) and Goal Orientation (GO) and these together make the acronym of RHEO. Therefore, IMM-RHEO is piloted in the aquifer of Tabriz Plain with sparse and possibly heterogeneous data. The results provide some evidence that (i) IMM at two levels improves on the accuracy of individual models; and (ii) model combinations in IMM practices bring ‘model-learning’ into fashion for learning with the goal to explain baseline conditions and impacts of subsequent management changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call