Abstract

We propose a type of quantum statistics which we call inclusion statistics, in which particles tend to coalesce more than ordinary bosons. Inclusion statistics is defined in analogy with exclusion statistics, in which statistical exclusion is stronger than in Fermi statistics, but now extrapolating beyond Bose statistics, resulting in statistical inclusion. A consequence of inclusion statistics is that the lowest space dimension in which particles can condense in the absence of potentials is d=2, unlike d=3 for the usual Bose-Einstein condensation. This reduction in the dimension happens for any inclusion stronger than bosons, and the critical temperature increases with stronger inclusion. Possible physical realizations of inclusion statistics involving attractive interactions between bosons may be experimentally achievable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.