Abstract
Recently the non-relativistic convergent close-coupling method has been extended into the relativistic domain [1]. When applied to electron impact collision processes for highly charged hydrogen-like ions, the RCCC method that utilizes relativistic kinematics and the Coulomb interaction in the absence of QED Breit and Møller corrections is suitable for target ions with atomic number Z up to Z ≈ 30. For Z larger than 30, such QED corrections become significant and must be included in the calculations. We have modified the RCCC computer code accordingly and report the results for Z = 100 selected excitation cross sections and for U91+ ionization cross sections which were found to be in good agreement with previous calculations of Fontes et al.[2].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.