Abstract

Existing elasto-plastic critical state constitutive models for unsaturated soil provide no information on the variation of water content or degree of saturation. These models cannot therefore, for example, be used to predict unsaturated soil behaviour during undrained loading, when the variation of suction is determined by the requirement that water content remains constant. This problem has been tackled by extending an existing elasto-plastic model to include relationships describing the variation of specific water volume (the volume of water and solids in an element of soil containing unit volume of solids). The proposed form of the variation of specific water volume was based on consideration of the soil fabric, resulting in a coupled form of elasto-plastic behaviour. Predictions from the elasto-plastic model showed good agreement with the experimental results from suction-controlled triaxial tests on unsaturated samples of compacted speswhite kaolin. Normal compression lines for specific water volume at different values of suction were well predicted, as was the variation of specific water volume during wetting. Critical state values of specific water volume were slightly underestimated, but test paths for both drained and undrained shearing were predicted with reasonable success. Key words: compacted clays, constitutive model, critical state, elasto-plasticity, triaxial tests, unsaturated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call