Abstract

In this study, we present an extension of the theoretical–computational approach developed in our group and based on molecular dynamics simulations, quantum chemical calculations, perturbed matrix method, and essential dynamics analysis for taking into account the cybotactic effect in the computational modeling of absorption spectra of molecular systems in condensed phase. The low-energy UV–Vis spectra of para-nitroaniline in water, methanol, and in the presence of a zwitterionic micelle have been computationally addressed and compared to the experimental data. The approach, considering all the systematic errors deriving from the intrinsic limitations of the computational setup (force field, quantum chemical calculations, and the approximations of the method), satisfactorily reproduces the experimental spectral shifts and peaks shapes and provides a promising tool of investigation for reproducing spectral observables of very complex systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.