Abstract
In this paper, an exact closed-form solution for the Eshelby problem of a polygonal inclusion with a graded eigenstrain in an anisotropic piezoelectric full plane is presented. For this electromechanical coupling problem, by virtue of Green’s function solutions, the induced elastic and piezoelectric fields are first expressed in terms of line integrals on the boundary of the inclusion. Using the line-source Green’s function, the line integral is then carried out analytically for the linear eigenstrain case, with the final expression involving only elementary functions. Finally, the solution is applied to the semiconductor quantum wire (QWR) of square, triangle, circle and ellipse shapes within the GaAs (001) substrate. It is demonstrated that there exists significant difference between the induced field by the uniform eigenstrain and that by the linear eigenstrain. Since the misfit eigenstrain in most QWR structures is actually non-uniform, the present solution should be particularly appealing to nanoscale QWR structure analysis where strain and electric fields are coupled and are affected by the non-uniform misfit strain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.