Abstract

A correction for katabatic winds and polar easterlies is developed to deal with their dramatic underestimation by the atmospheric component of a coarse-resolution global coupled climate model. This correction relies on a comparison of the atmospheric surface circulation simulated by the model with the one provided by a regional atmospheric model, and consists of wind stress modifications in the vicinity of the Antarctic coast. Corrections are spatially varying and different for both wind components. The impacts of the correction on the modelled Antarctic sea ice and World Ocean’s properties on long timescales are assessed, showing that katabatic winds thin sea ice and strongly enhance its production along the continent. Consequently, the formation rate, salinity and temperature of the Antarctic Bottom Water are increased. This leads to model results in better agreement with observations, especially in the deep ocean where the mean errors in temperature and salinity decrease by 9% and 37%, respectively. Hence, correcting katabatic winds seems to be an appropriate way to improve the representation of sea ice-related surface processes around Antarctica.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.