Abstract

Properties of the inclusion complexes of quercetin (QUE) with sulfobutyl ether-β-cyclodextrin (SBE-β-CD), hydroxypropyl-β-cyclodextrin (HP-β-CD), and methylated-β-cyclodextrin (M-β-CD) in tris–HCl buffer solutions of pH 7.40 were investigated. The stoichiometry and thermodynamic parameters for the complexation process (stability constants K, Gibbs free energy change ΔG, enthalpy change ΔH and entropy change ΔS) were determined using phase-solubility and fluorescence spectra analysis. The thermodynamic studies indicated that the inclusion reactions between QUE and the three β-CDs are enthalpy-driven processes. Proton nuclear magnetic resonance spectroscopy indicated that B-ring, C-ring, and part of A-ring of QUE interact with the cavity of β-CDs. The antioxidant activity of QUE and its inclusion complexes were determined by the scavenging of stable radical DPPH*. The results showed that the complexed QUE/CDs were more effective than free QUE, with the QUE/SBE-β-CD complex as the best form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.