Abstract

Poly (d,l-lactic acid) (PDLLA) was combined with α-CD to form inclusion complexes (ICs) with distinct PDLLA fractions. The structural changes resulting from this coalescence process were analyzed by Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR), and X-ray diffraction (XRD). The presence of both components in the ICs was confirmed by FTIR. The encapsulated PDLLA fraction was quantified by 1H NMR. XRD data evidenced that it was possible to transform the amorphous PDLLA into a well-organized channel-type crystalline structure. DSC showed that the glass transition temperature of the PDLLA fraction in the ICs was higher than in the pure polymer, indicating that the ultra-confinement effect imposed by the ICs organization clearly limits PDLLA molecular dynamics. The confinement effect on the glass transition dynamics was investigated by unconventional dynamic mechanical analysis experiments, which confirmed that ICs segmental mobility is highly restricted when compared with the one of pure PDLLA. Bulk PDLLA presents a typical VFTH behavior while the ICs dynamics shows an Arrhenius trend.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.