Abstract

The keto–enol interconversion of 2-acetyl-1-tetralone (ATLO) and of 2-acetyl-cyclohexanone (ACHE) occurs at measurable rates in aqueous acid or neutral medium. This finding allowed us to determine the keto–enol equilibrium constants, KE, by following two distinct methods. Both methodologies afford results in complete agreement. The first one is a test of the Beer-Lambert law under two different experimental conditions that contain the substrate only in the enol form or in a mixture of both tautomers in equilibrium. The second method analyses the UV-absorption spectrum of each substrate under keto–enol equilibrium in aqueous β-cyclodextrin (β-CD) solutions of variable concentration: the presence of β-CD increases the percentage of the enol due to the formation of 1:1 inclusion complexes between this tautomer and β-CD. Rates of keto–enol tautomerization, in neutral and acid medium, and of nitrosation in acid medium under non equilibrium conditions have also been measured. Throughout the study, the presentation of the results is done by comparing the different behaviour observed between ATLO and ACHE. While the enol of ACHE included into the β-CD cavity shows to be unreactive either in tautomerization or in nitrosation, in the case of ATLO it is observed tautomerization through the complexed enol. In addition, with ACHE only the enol tautomer forms inclusion complexes with β-CD, whereas with ATLO the keto tautomer entries also to the β-CD cavity, however the stability constant with the enol is near 3-fold that of the keto isomer. These main differences can be rationalized on the basis of the molecular structure of these diketones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call