Abstract

Cyclodextrins (CDs) have been discovered to provide an efficient solution to the limited application of ester aroma molecules used in food, tobacco, and medication due to their strong smell and unstable storage. This work combined molecular modeling and experimental to analyze the conformation and controlled release of isomeric ester aroma compounds/β-CD inclusion complexes (ICs). The investigation revealed that ester aroma compounds could be effectively encapsulated within the β-CD cavity, forming ICs with low binding affinity. Furthermore, the key driving forces in ICs were identified as hydrogen bonds and van der Waals interactions through theoretical simulation. Results from the Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) and Isothermal titration calorimetry (ITC) experiments confirmed the intermolecular interaction predicted by the molecular model. Notably, the release rate of aroma compounds from L-menthyl acetate/β-CD (LMA/β-CD) IC exceeded that of terpinyl acetate/β-CD (TA/β-CD) IC. This difference is attributed to the length of the chain of aroma molecules and the variation in the position of functional groups, influencing the stable formation of ICs with β-CD. These findings hold potential implications for refining the application of ICs across diverse industries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call