Abstract

The photophysical characteristics of the ground and excited states of 2-naphthylamine-6-sulfonate (2-NA-6-S) were investigated in different solvents and in β-cyclodextrin (β-CD). The spectral shifts are well correlated with Kamlet–Taft relationship. Multiple linear regression analysis indicated that both non-specific dipolar interaction and specific hydrogen bonding interactions play competitive roles in determining the position of the absorption maximum, while the dipolar interaction is the dominating parameter in determining the emission maximum. For the Stokes shift, both the nonspecific interaction and the hydrogen donation property of the solvent are participating equally. The molecular encapsulation of 2-NA-6-S by β-CD in aqueous solution has been studied by different spectroscopic techniques. Fluorescence measurements show that the dielectric constant of β-CD experienced by the included 2-NA-6-S is intermediate between water and methanol. The changes observed in the absorption and fluorescence spectra of 2-NA-6-S upon inclusion in β-CD allowed the association constant to be calculated and found to be 465 ± 100 and 495 ± 100 M −1, respectively. The changes observed for the chemical shifts of 2-NA-6-S and β-CD 1H NMR spectra and the corresponding 1H NMR spectra of their mixture confirmed the formation of the inclusion complex and showed that 2-NA-6-S is encapsulated in β-CD cavity in a tilted equatorial approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.