Abstract

Abstract. Recent research suggests that atmospheric gravity waves can affect offshore wind-farm performance. A fast wind-farm boundary layer model has been proposed to simulate the effects of these gravity waves on wind-farm operation by Allaerts and Meyers (2019). The current work extends the applicability of that model to free atmospheres in which wind and stability vary with altitude. We validate the model using reference cases from literature on mountain waves. Analysis of a reference flow shows that internal gravity-wave resonance caused by the atmospheric non-uniformity can prohibit perturbations in the atmospheric boundary layer (ABL) at the wavelengths where it occurs. To determine the overall impact of the vertical variations in the atmospheric conditions on wind-farm operation, we consider 1 year of operation of the Belgian–Dutch wind-farm cluster with the extended model. We find that this impact on individual flow cases is often of the same order of magnitude as the total flow perturbation. In 16.6 % of the analyzed flows, the relative difference in upstream velocity reduction between uniform and non-uniform free atmospheres is more than 30 %. However, this impact is small when averaged over all cases. This suggests that variations in the atmospheric conditions should be taken into account when simulating wind-farm operation in specific atmospheric conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.