Abstract
Most of the decision support systems for balancing industrial assembly lines are designed to report a huge number of possible line configurations, according to several criteria. In this contribution, we tackle a more realistic variant of the classical assembly line problem formulation, time and space assembly line balancing. Our goal is to study the influence of incorporating user preferences based on Nissan automotive domain knowledge to guide the multi-objective search process with two different aims. First, to reduce the number of equally preferred assembly line configurations (i.e., solutions in the decision space) according to Nissan plants requirements. Second, to only provide the plant managers with configurations of their contextual interest in the objective space (i.e., solutions within their preferred Pareto front region) based on real-world economical variables. We face the said problem with a multi-objective ant colony optimisation algorithm. Using the real data of the Nissan Pathfinder engine, a solid empirical study is carried out to obtain the most useful solutions for the decision makers in six different Nissan scenarios around the world.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.