Abstract

Because of their isolation, continental islands (e.g., Madagascar) are often thought of as ideal systems to study allopatric speciation. However, many such islands have been connected intermittently to their neighboring continent during recent periods of glaciation, which may cause frequent contact between the diverging populations on the island and continent. As a result, the speciation processes on continental islands may not meet the prerequisites for strictly allopatric speciation. We used multiple lines of evidence to re-evaluate the taxonomic status of the Hainan Hwamei (Leucodioptron canorum owstoni), which is endemic to Hainan, the largest continental island in the South China Sea. Our analysis of mitochondrial DNA and twelve nuclear loci suggests that the Hainan Hwamei can be regarded as an independent species (L. owstoni); the morphological traits of the Hainan Hwamei also showed significant divergence from those of their mainland sister taxon, the Chinese Hwamei (L. canorum). We also inferred the divergence history of the Hainan and Chinese Hwamei to see whether their divergence was consistent with a strictly allopatric model. Our results suggest that the two Hwameis split only 0.2 million years ago with limited asymmetrical post-divergence gene flow. This implies that the Hainan Hwamei is an incipient species and that speciation occurred through ecologically divergent selection and/or assortative mating rather than a strictly allopatric process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.