Abstract

Based on a force analysis, an expression is derived to describe the critical Shields number for incipient motion of uniform cohesionless sediment particles on a riverbank slope in terms of flow parameters, outflow seepage, and physical and mechanical properties of sediments. Parametric studies were conducted to investigate quantitatively the effects of hydraulic gradient of seepage, slope angle, and flow direction on the critical Shields number. The results show that the critical Shields number decreases with an increase in the hydraulic gradient. Where bank collapse is concerned, the most dangerous direction of hydraulic gradient of outflow seepage is at an angle equal to the effective internal angle of friction of the sediment mass with respect to slope surface. At a certain value of hydraulic gradient, the critical Shields number decreases with increasing slope angle. Open flow becomes more erosive when the current direction changes from horizontally parallel with the riverbank line to turning downward.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call