Abstract

Incipient defects in bearings are traditionally diagnosed either by developing discriminative models for features that are extracted from raw acoustic emission (AE) signals, or by detecting peaks at characteristic defect frequencies in the envelope power spectrum of the AE signals. Under variable speed conditions, however, such methods do not yield the best results. This letter proposes a technique for diagnosing incipient bearing defects under variable speed conditions, by extracting features from different sub-bands of the inherently non-stationary AE signal, and then classifying bearing defects using a weighted committee machine, which is an ensemble of support vector machines and artificial neural networks. The proposed method also improves the generalization performance of the neural networks to enhance their classification accuracy, particularly with limited training data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.