Abstract

[1] Recent geodetic data are compatible with NNE–SSW tectonic extension at a rate of ∼5 mm/yr in Sicily, southern Italy, within a broader region of net active compression along the Nubian plate margin (northern Africa). The structures that accommodate such extensional regime and its cause are still unknown. From field structural surveys and seismological analyses, the geometry, kinematics, structural architecture, and seismic potential of an extensional seismic zone linking Cefalu and Mount Etna in central eastern Sicily are defined. The zone includes high-angle WNW striking normal and right-lateral strike-slip faults and subordinate north and NNE striking strike-slip faults either right or left lateral. The occurrence of small discontinuous faults and the absence of related depressions and sedimentary basins suggest that the extensional regime is still in an incipient stage. The ongoing seismic activity possibly reactivates preexisting faults. Instrumentally and historically recorded earthquakes are lower than about 6 in magnitude, and destructive events are historically unknown since at least 1300 A.D. This apparent upper bound of earthquake magnitudes is consistent with the maximum magnitude values estimated from the length of the longest mapped faults and sources of seismic swarms, which all together suggest a value between 6 and 6.5 as the maximum expected magnitude that can be proposed at the present stage of investigation for earthquakes in the study area. Lateral extension on preexisting faults and upwelling of melt mantle material beneath Mount Etna are considered viable processes to explain, at least in part, the active extensional tectonics along the Cefalu-Etna seismic zone. Strike-slip seismic faulting beneath Mount Etna may be part of a previously proposed diffuse transfer zone affecting northeastern Sicily and including the Tindari Fault.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.