Abstract

Machinery condition monitoring and fault diagnosis are essential for early detection of equipment malfunctions or failures, which insure productivity, quality, and safety in the manufacturing process. This paper aims at extracting fault features of rolling element bearings at the incipient fault stage. K-singular value decomposition (K-SVD), one technique for sparse representation of signals, is used for study. In K-SVD, its dictionary is trained from data by machine learning techniques, which allows more flexibility to adapt to variation of real signals than the predefined dictionaries. Analysis on simulated bearing signals and real signals shows that K-SVD can give better bearing fault features than the predefined dictionaries such as wavelet dictionaries. However, during our simulation study, K-SVD was found to have large representation error under heavy noise. To reduce the noise effect, minimum entropy deconvolution (MED) is used as a prefilter. The combination of MED and K-SVD is proposed for incipient bearing fault detection. The method is verified by simulation and experimental study. It is shown that the proposed method can effectively extract the impulsive fault feature of the tested bearing at its incipient fault stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call