Abstract

We model the evolution of flowering time using a multilocus quantitative genetic model with non-selective assortative mating and mutation to investigate incipient allochronic speciation in a finite population. For quantitative characters with evolutionary parameters satisfying empirical observations and two approximate inequalities that we derived, disjunct clusters in the population flowering phenology originated within a few thousand generations in the absence of disruptive natural or sexual selection. Our simulations and the conditions we derived showed that cluster formation was promoted by limited population size, high mutational variance of flowering time, short individual flowering phenology and a long flowering season. By contrast, cluster formation was hindered by inbreeding depression, stabilizing selection and pollinator limitation. Our results suggest that incipient allochronic speciation in populations of limited size (satisfying two inequalities) could be a common phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.