Abstract

Some previous transient analyses of dislocation emission from dynamically loaded cracks have treated glide at constant speeds, and have invoked an emissions criterion that allows the dislocation force to exceed the yield stress level during glide. In the context of nonstrain-hardening plasticity, this analysis requires that the force remain at the yield stress level. For an exact solution to the problem of screw dislocation emission from a crack subjected to plane SH-wave diffraction, the result is an equation of motion for the dislocation, which can be integrated exactly. The dislocation is found to accelerate during glide to a high but subcritical speed, before decelerating to its arrest position. A general incident SH-wave is considered, but is then specialized to the cases of a step-stress and a sinusoidal wave. Calculations on the basis of material and wave parameters show that purely brittle fracture can be difficult to achieve, and that wavelength/frequency cutoffs exist, beyond which emission cannot occur.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.