Abstract

Recovery efforts for the endangered Serianthes nelsonii have been deficient. To learn more about leaf development costs, the content of biomass and essential elements were determined in the supportive and laminae tissue of leaves that were constructed under different levels of incident light. The biomass required to construct a leaf in 22% light transmission was 65% of that in full sun, and light treatment did not influence the balance between supportive and laminae tissues. Concentrations of carbon, phosphorus, iron, manganese, and boron were greatest for in full-sun laminae, but those of nitrogen, potassium, calcium, magnesium, and zinc were greatest in shaded laminae. The same patterns with regard to light were exhibited in supportive tissues for carbon, nitrogen, potassium, calcium, magnesium, and zinc. In contrast, the supportive tissue phosphorus content was greatest in shaded leaves, and the light level did not influence the supportive tissue concentrations of the remaining elements. The leaf laminae consistently exhibited greater concentrations of elements with the exception of potassium and nickel, which were greater in the supportive tissues. These results indicate that the construction of full-sun S. nelsonii leaves is more costly than that of shaded leaves, and the transfer of biomass and essential elements between the supportive and laminae tissues is not substantially influenced by the developmental light level. Identifying the drivers of S. nelsonii leaf element concentrations is crucial for understanding the role of this charismatic tree in community-level processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call