Abstract
Micro-milling has been accepted as the most promising method to repair the micro-defects on the surface of KH2PO4 (KDP) optics. However, surface tool marks are inevitably introduced during the micro-milling repairing process, and could possess great potential risks in lowering the laser-induced damage threshold of KDP optics. The primary cause of laser damage growth of nonlinear crystals has been considered as its internal light intensification. In this work, how the tool marks impact the incident laser modulation as well as the laser-induced damage resistance of micro-milled KDP optics was theoretically and experimentally investigated. The results indicate that periodic tool marks can cause diffraction effect and result in significant relative light intensity modulation (IRmax), up to 5.6 times higher than that inside smooth crystal surfaces. Although the change trends of IRmax with respect to tool marks on both surfaces of KDP optics are similar, the IRmax induced by the rear-surface tool marks is nearly twice higher than that induced by the front-surface tool marks, which means the rear surface with tool marks are more vulnerable to be damaged. The period of tool marks determines the modulation degree and distribution patterns of light intensity inside KDP crystal while the residual height of tool marks can only slightly regulate the modulation degree of light intensity. The tool marks with a period of 1 μm normally give rise to serious light intensification and should be strictly excluded, while the period of tool marks from 10 μm to 20 μm is conducive to the laser damage resistance of micro-milled KDP optics, which were verified by the tests of transmittance capacity and laser damage resistance, and is supposed to be preferred in the actual repairing process of full-aperture KDP optics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.