Abstract

We give a fairly elementary and simple proof that shows that the number of incidences between m points and n lines in R^3, so that no plane contains more than s lines, is O(m^{1/2}n^{3/4} + m^{2/3}n^{1/3}s^{1/3} + m + n) (in the precise statement, the constant of proportionality of the first and third terms depends, in a rather weak manner, on the relation between m and n). This bound, originally obtained by Guth and Katz as a major step in their solution of Erdos's distinct distances problem, is also a major new result in incidence geometry, an area that has picked up considerable momentum in the past six years. Its original proof uses fairly involved machinery from algebraic and differential geometry, so it is highly desirable to simplify the proof, in the interest of better understanding the geometric structure of the problem, and providing new tools for tackling similar problems. This has recently been undertaken by Guth. The present paper presents a different and simpler derivation, with better bounds than those in Guth, and without the restrictive assumptions made there. Our result has a potential for applications to other incidence problems in higher dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.