Abstract

We prove two theorems concerning incidence posets of graphs, cover graphs of posets and a related graph parameter. First, answering a question of Haxell, we show that the chromatic number of a graph is not bounded in terms of the dimension of its incidence poset, provided the dimension is at least four. Second, answering a question of Kříž and Nešetřil, we show that there are graphs with large girth and large chromatic number among the class of graphs having eye parameter at most two.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.