Abstract

BackgroundExtensive malaria control measures have been implemented on Bioko Island, Equatorial Guinea over the past 16 years, reducing parasite prevalence and malaria-related morbidity and mortality, but without achieving elimination. Malaria vaccines offer hope for reducing the burden to zero. Three phase 1/2 studies have been conducted successfully on Bioko Island to evaluate the safety and efficacy of whole Plasmodium falciparum (Pf) sporozoite (SPZ) malaria vaccines. A large, pivotal trial of the safety and efficacy of the radiation-attenuated Sanaria® PfSPZ Vaccine against P. falciparum is planned for 2022. This study assessed the incidence of malaria at the phase 3 study site and characterized the influence of socio-demographic factors on the burden of malaria to guide trial design.MethodsA cohort of 240 randomly selected individuals aged 6 months to 45 years from selected areas of North Bioko Province, Bioko Island, was followed for 24 weeks after clearance of parasitaemia. Assessment of clinical presentation consistent with malaria and thick blood smears were performed every 2 weeks. Incidence of first and multiple malaria infections per person-time of follow-up was estimated, compared between age groups, and examined for associated socio-demographic risk factors.ResultsThere were 58 malaria infection episodes observed during the follow up period, including 47 first and 11 repeat infections. The incidence of malaria was 0.25 [95% CI (0.19, 0.32)] and of first malaria was 0.23 [95% CI (0.17, 0.30)] per person per 24 weeks (0.22 in 6–59-month-olds, 0.26 in 5–17-year-olds, 0.20 in 18–45-year-olds). Incidence of first malaria with symptoms was 0.13 [95% CI (0.09, 0.19)] per person per 24 weeks (0.16 in 6–59-month-olds, 0.10 in 5–17-year-olds, 0.11 in 18–45-year-olds). Multivariate assessment showed that study area, gender, malaria positivity at screening, and household socioeconomic status independently predicted the observed incidence of malaria.ConclusionDespite intensive malaria control efforts on Bioko Island, local transmission remains and is spread evenly throughout age groups. These incidence rates indicate moderate malaria transmission which may be sufficient to support future larger trials of PfSPZ Vaccine. The long-term goal is to conduct mass vaccination programmes to halt transmission and eliminate P. falciparum malaria.

Highlights

  • Extensive malaria control measures have been implemented on Bioko Island, Equatorial Guinea over the past 16 years, reducing parasite prevalence and malaria-related morbidity and mortality, but without achieving elimination

  • Multivariate assessment showed that study area, gender, malaria positivity at screening, and household socioeconomic status independently predicted the observed incidence of malaria

  • The burden of malaria is concentrated in sub-Saharan Africa, where 94% of the estimated 229 million malaria cases occurred in 2019, the large majority caused by Plasmodium falciparum (Pf )

Read more

Summary

Introduction

Extensive malaria control measures have been implemented on Bioko Island, Equatorial Guinea over the past 16 years, reducing parasite prevalence and malaria-related morbidity and mortality, but without achieving elimination. Three phase 1/2 studies have been con‐ ducted successfully on Bioko Island to evaluate the safety and efficacy of whole Plasmodium falciparum (Pf ) sporo‐ zoite (SPZ) malaria vaccines. A large, pivotal trial of the safety and efficacy of the radiation-attenuated S­ anaria® PfSPZ Vaccine against P. falciparum is planned for 2022. The Government of Equatorial Guinea (EG) is partnering with Medical Care Development International (MCDI), Ifakara Health Institute (IHI), Swiss Tropical and Public Health Institute (Swiss TPH), and Sanaria Inc. to evaluate the safety and efficacy of the whole P. falciparum sporozoite (PfSPZ) malaria vaccine approach, with radiation-attenuated ­Sanaria® PfSPZ Vaccine and the chemo-attenuated ­Sanaria® PfSPZ-CVac, the two leading products under development [4, 5]. PfSPZ Vaccines are intended to be offered to whole populations through mass vaccination programmes (MVPs) to eliminate malaria in defined geographic areas

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call