Abstract

Despite an unknown cause, Kawasaki disease (KD) is currently the primary leading cause of acquired heart disease in developed countries in children and has been increasing in recent years. Research efforts have explored environmental factors related to KD, but they are still unclear especially in the tropics. We aimed to describe the incidence of KD in children, assess its seasonality, and determine its association with ambient air temperature in the National Capital Region (NCR), Philippines from January 2009 to December 2019. Monthly number of KD cases from the Philippine Pediatric Society (PPS) disease registry was collected to determine the incidence of KD. A generalized linear model (GLM) with quasi-Poisson regression was utilized to assess the seasonality of KD and determine its association with ambient air temperature after adjusting for the relevant confounders. The majority of KD cases (68.52%) occurred in children less than five years old, with incidence rates ranging from 14.98 to 23.20 cases per 100,000 population, and a male-to-female ratio of 1.43:1. Seasonal variation followed a unimodal shape with a rate ratio of 1.13 from the average, peaking in March and reaching the lowest in September. After adjusting for seasonality and long-term trend, every one-degree Celsius increase in the monthly mean temperature significantly increased the risk of developing KD by 8.28% (95% CI: 2.12%, 14.80%). Season-specific analysis revealed a positive association during the dry season (RR: 1.06, 95% CI: 1.01, 1.11), whereas no evidence of association was found during the wet season (RR: 1.10, 95% CI: 0.95, 1.27). We have presented the incidence of KD in the Philippines which is relatively varied from its neighboring countries. The unimodal seasonality of KD and its linear association with temperature, independent of season and secular trend, especially during dry season, may provide insights into its etiology and may support enhanced KD detection efforts in the country.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.