Abstract

Inchinkoto (ICKT), a traditional herbal medicine that is often used as a hepatoprotective drug in Japan, has pharmacological properties that include antioxidant, anti-inflammatory, and choleretic actions. Genipin is a metabolite of geniposide and the most abundant ingredient of ICKT; furthermore, it is considered to be the active substance responsible for its pharmacological properties in the liver. Drugs with such pharmacological characteristics are expected to prevent intestinal barrier dysfunction, which causes inflammatory bowel diseases (IBDs). However, no studies have investigated the effects of ICKT on the intestinal epithelial barrier. Therefore, we investigated the activity of ICKT in intestinal tight junctions by using cultured Caco-2 cell monolayers. The action of the compound on tight junctions was examined by measuring transepithelial electrical resistance (TEER) and sodium fluorescein (Na-F) permeability in the presence or absence of lipopolysaccharide (LPS). Moreover, the expression of the tight junction protein claudin-1 was assessed by using immunofluorescent staining. ICKT and genipin increased TEER and decreased Na-F permeability, which was suggestive of enhanced intestinal epithelial barrier function. Moreover, they prevented the LPS-induced destruction of the barrier, i.e., a decrease in TEER and an increase in Na-F permeability. Immunofluorescence staining revealed a high claudin-1 expression level on the cell surface, whereas exposure to LPS downregulated claudin-1. In turn, ICKT and genipin prevented the LPS-mediated reduction of claudin-1. These results suggest that ICKT enhances intestinal epithelial barrier function by upregulating claudin-1. Furthermore, genipin contributed to these effects. ICKT may be a promising medicine for the prevention and treatment of diseases associated with intestinal barrier disruption, such as IBD, obesity, and metabolic disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.