Abstract

AbstractLead halide perovskites have made great advance in direct X‐ray detection, however the presence of toxic lead and the requirement of high working voltages severely limit their applicability and operational stability. Thus, exploring “green” lead‐free hybrid perovskites capable of detecting X‐rays at zero bias is crucial but remains toughly challenging. Here, utilizing chiral R/S‐1‐phenylpropylamine (R/S‐PPA) cations, a pair of 0D chiral‐polar perovskites, (R/S‐PPA)2BiI5 (1R/1S) are constructed. Their intrinsic spontaneous electric polarization induces a large bulk photovoltage of 0.63 V, which acts as a driving force to separate and transport photogenerated carriers, thus endowing them with the capability of self‐driven detection. Consequently, self‐driven X‐ray detectors with a low detection limit of 270 nGy s−1 are successfully constructed based on high‐quality, inch‐sized single crystals of 1R. Notably, they show suppressed baseline drift under the self‐driven mode, exhibiting superior operational stability. This study realizes self‐driven X‐ray detection in a single‐phase lead‐free hybrid perovskite by exploiting the intrinsic bulk photovoltaic effect, which sheds light on future explorations of lead‐free hybrid perovskites toward “green” self‐driven radiation detectors with high performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.