Abstract

An experimental study of fin-generated shock wave turbulent boundary-layer interactions confirmed previous observations that, sufficiently far from the fin apex, such interactions become conical. The inception length to conical symmetry was found to increase weakly with Mach number for Mach numbers from 2.5 to 4 and fin angles from 4 to 22 deg. For the range of interactions examined, the inception length was found to depend primarily upon the inviscid shock angle, this angle ranging from 21 to 40 deg. The behavior of the inception length with shock angle can be broadly divided into two categories. For 'weak' interactions with shock angles less than about 35 deg, the inception length decreased as the shock angle increased. For 'strong' interactions with shock angles greater than about 35 deg, the inception region was small and was approximately constant at three boundary-layer thicknesses in length. In the latter, strong interaction case, the inception length was an order of magnitude smaller than that found in the weakest interactions examined, to the extent that strong interactions were practically fully-developed from the apex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.