Abstract

The Internet of Things (IoT) can be conveniently deployed while empowering various applications, where the IoT nodes can form clusters to finish certain missions collectively. In this paper, we propose to employ unmanned aerial vehicles (UAVs) to assist the clustered IoT data collection with blockchain-based security provisioning. In particular, the UAVs generate candidate blocks based on the collected data, which are then audited through a lightweight proof-of-stake consensus mechanism within the UAV-based blockchain network. To motivate efficient blockchain while reducing the operational cost, a stake pool is constructed at the active UAV while encouraging stake investment from other UAVs with profit sharing. The problem is formulated to maximize the overall profit through the blockchain system in unit time by jointly investigating the IoT transmission, incentives through investment and profit-sharing, and UAV deployment strategies. Then, the problem is solved in a distributed manner while being decoupled into two layers. The inner layer incorporates IoT transmission and incentive design, which are tackled with large-system approximation and one-leader-multi-follower Stackelberg game analysis, respectively. The outer layer for UAV deployment is undertaken with a multi-agent deep deterministic policy gradient approach. Results show the convergence of the proposed learning process and the UAV deployment, and also demonstrated the performance superiority of our proposal as compared with the baselines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.