Abstract

Federated learning is a promising tool in the Internet-of-Things (IoT) domain for training a machine learning model in a decentralized manner. Specifically, the data owners (e.g., IoT device consumers) keep their raw data and only share their local computation results to train the global model of the model owner (e.g., an IoT service provider). When executing the federated learning task, the data owners contribute their computation and communication resources. In this situation, the data owners have to face privacy issues where attackers may infer data property or recover the raw data based on the shared information. Considering these disadvantages, the data owners will be reluctant to use their data to participate in federated learning without a well-designed incentive mechanism. In this article, we deliberately design an incentive mechanism jointly considering the task expenditure and privacy issue of federated learning. Based on a differentially private federated learning (DPFL) framework that can prevent the privacy leakage of the data owners, we model the contribution as well as the computation, communication, and privacy costs of each data owner. The three types of costs are data owners' private information unknown to the model owner, which thus forms an information asymmetry. To maximize the utility of the model owner under such information asymmetry, we leverage a 3-D contract approach to design the incentive mechanism. The simulation results validate the effectiveness of the proposed incentive mechanism with the DPFL framework compared to other baseline mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.