Abstract

Based on the Snyder–Mitchell model that describes the beam propagation in strongly nonlocal nonlinear media, the close forms of Ince–Gaussian (IG) beams have been found. The transverse structures of the IG beams are described by the product of the Ince polynomials and the Gaussian function. Depending on the input power of the beams, the IG beams can be either a soliton state or a breather state. The IG beams constitute the exact and continuous transition modes between Hermite–Gaussian beams and Laguerre–Gaussian beams. The IG vortex beams can be constructed by a linear combination of the even and odd IG beams. The transverse intensity pattern of IG vortex beams consists of elliptic rings, whose number and ellipticity can be controlled, and a phase displaying a number of in-line vortices, each with a unitary topological charge. The analytical solutions of the IG beams are confirmed by the numerical simulations of the nonlocal nonlinear Schrdinger equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.