Abstract
Salt is abundant in biological samples and can cause problems in capillary electrophoresis (CE) due to excessive Joule heating and electrodispersion. Desalting with solid phase minibeds is currently most compatible with the small sample volumes of CE. They are however difficult to prepare and suffer from poor bed-to-bed reproducibility. Alternatively, enrichment of proteins and peptides was developed using CE, by trapping them at their isoelectric points with a discontinuous buffer of mismatched pH. Ionic salts, such as sodium chloride, do not possess isoelectric points and therefore are not retained by the discontinuous buffer. In this work, the removal of ionic salt during protein enrichment using CE with discontinuous buffers was investigated. Nonbuffering ions were found to electromigrate through the pH junction without disrupting the enrichment process and were eventually removed from the capillary. Mass spectral data obtained from the enriched and desalted sample confirmed a significant signal enhancement. Finally, a strong acid was introduced to remove the pH junction and thus facilitated a subsequent capillary zone electrophoresis separation. An integrated procedure of enrichment, desalting, and separation was demonstrated on a mixture of three protein standards.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.