Abstract

BackgroundSolanum carolinense (horsenettle) is a highly successful weed with a gametophytic self-incompatibility (SI) system. Previous studies reveal that the strength of SI in S. carolinense is a plastic trait, associated with particular S-alleles. The importance of this variation in self-fertility on the ability of horsenettle to found and establish new populations will depend, to a large extent, on the magnitude of inbreeding depression. We performed a series of greenhouse and field experiments to determine the magnitude of inbreeding depression in S. carolinense, whether inbreeding depression varies by family, and whether the estimates of inbreeding depression vary under field and greenhouse conditions. We performed a series of controlled self- and cross-pollinations on 16 genets collected from a large population in Pennsylvania to obtain progeny with different levels of inbreeding. We grew the selfed and outcrossed progeny in the greenhouse and under field conditions and recorded various measures of growth and reproductive output.ResultsIn the greenhouse study we found (1) a reduction in flower, fruit and seed production per fruit in inbred (selfed) progeny when compared to outbred (outcrossed) progeny; (2) a reduction in growth of resprouts obtained from rhizome cuttings of selfed progeny; and (3) an increase in the ability to self-fertilize in the selfed progeny. In the field, we found that (1) outcrossed progeny produced more leaves than their selfed siblings; (2) herbivory seems to add little to inbreeding depression; and (3) outcrossed plants grew faster and were able to set more fruits than selfed plants.ConclusionSolanum carolinense experiences low levels of inbreeding depression under greenhouse conditions and slightly more inbreeding depression under our field conditions. The combined effects of low levels of inbreeding depression and plasticity in the strength of SI suggest that the production of selfed progeny may play an important role in the establishment of new populations of S. carolinense.

Highlights

  • Solanum carolinense is a highly successful weed with a gametophytic self-incompatibility (SI) system

  • These rhizome resprouts produced fewer leaves and were smaller when obtained from selfed progeny (Tables 1, 2) indicating perhaps that fewer resources were allocated to vegetative spread via rhizomes in selfed progeny compared to outcrossed progeny

  • Genetic variants that promote self-fertilization should increase in frequency, due to the inherent 50% transmission advantage and the ability to produce offspring when cross pollen is scarce, unless these variants are opposed by other evolutionary forces such as inbreeding depression and pollen discounting [1,71,72]

Read more

Summary

Introduction

Solanum carolinense (horsenettle) is a highly successful weed with a gametophytic self-incompatibility (SI) system. Previous studies reveal that the strength of SI in S. carolinense is a plastic trait, associated with particular S-alleles The importance of this variation in self-fertility on the ability of horsenettle to found and establish new populations will depend, to a large extent, on the magnitude of inbreeding depression. Field studies regarding the estimation of inbreeding depression should take into account the extent of herbivory as well as the potential family-specific effects of inbreeding on measures of fitness

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call