Abstract

Inadvertent selection is an important genetic process that frequently occurs during laboratory culture. The mass-reared strain of the sweet potato weevil Cylas formicarius exhibits stronger inbreeding depression than the wild strain does. When inbreeding depression occurs in a population, mating with a close relative is often considered maladaptive; however, in some contexts, the inclusive fitness benefits of inbreeding may outweigh the costs, favoring individuals that tolerate a low level of inbreeding depression. Theory predicts that mass-reared strain weevils will avoid inbreeding while wild strain weevils will tolerate inbreeding. To examine this prediction, we compared the effect of relatedness on the mating and insemination successes in mass-reared and wild strains of C. formicarius. While close relative pairs of the wild strain copulated less frequently than non-kin pairs, almost all mass-reared strain pairs copulated irrespective of relatedness. The results showed that the strain with weak inbreeding depression (wild strain) avoided inbreeding, whereas the strain with strong inbreeding depression (mass-reared strain) tolerated inbreeding. The contradiction between the theoretical prediction and our results is discussed from the perspective of laboratory adaptation, mating systems, and life history of C. formicarius.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call