Abstract

We have studied the capabilities of chemical beam epitaxy (CBE) to produce high-gain media for long-wavelength (1.5 μm) vertical cavity surface emitting lasers (VCSELs). Using a parameter pair of low growth temperature and small V/III ratio the integration of up to 15 highly strained (1.78%) InAsP quantum wells (QWs) into a periodic gain structure (PGS) is successfully demonstrated. In this work we present data of atomic force microscopy (AFM), X-ray diffraction, reflectivity and electro-luminescence measurements that prove the very good structural and optical quality of this CBE grown PGS. As an alternative to conventional multi quantum well (MQW) systems as active layers, a high-performance PGS may be used in a VCSEL structure to reduce the very strict requirements on the InP-based distributed Bragg reflectors (DBRs) or to increase the achievable output power. Due to the use of thickness-reduced InP-based DBRs in conjunction with a PGS as the active region the fabrication of fully epitaxial grown long-wavelength VCSELs might also be possible with CBE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.