Abstract
The structural properties of InAs/(GaIn)Sb and (InGa)As/GaSb superlattices (SLs), grown by solid-source molecular-beam epitaxy on (0 0 1) GaAs substrates using a strain relaxed GaSb or InAs buffer layer or directly on (0 0 1) InAs substrates, were analyzed by high-resolution X-ray diffraction and Raman spectroscopy. The residual strain within the SL was found to depend critically on the type of interface bonds, which can be either InSb- or GaAs-like. Thus, to achieve lattice matching to the buffer layer or substrate by strain compensation within the SL stack, the controlled formation of the interface bonds is vital. On the other hand, minimization of the residual strain is shown to be a prerequisite for achieving a high photoluminescence yield and high responsivities for InAs/(GaIn)Sb SL based IR detectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.