Abstract
Implementing superconductors capable of proximity-inducing a large energy gap in semiconductors in the presence of strong magnetic fields is a major goal toward applications of semiconductor/superconductor hybrid materials in future quantum information technologies. Here, we study the performance of devices consisting of InAs nanowires in electrical contact with molybdenum-rhenium (MoRe) superconducting alloys. The MoRe thin films exhibit transition temperatures of ∼10 K and critical fields exceeding 6 T. Normal/superconductor devices enabled tunnel spectroscopy of the corresponding induced superconductivity, which was maintained up to ∼10 K, and MoRe-based Josephson devices exhibited supercurrents and multiple Andreev reflections. We determine an induced superconducting gap lower than expected from the transition temperature and observe gap softening at finite magnetic field. These may be common features for hybrids based on large-gap, type II superconductors. The results encourage further development of MoRe-based hybrids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.