Abstract

We report the growth and characterization of InAlGaAs/InAlAs multiquantum wells (MQWs) emitting at ~1310 -nm grown on silicon by organometallic vapor phase epitaxy. Compared with the same structure grown on a reference planar InP substrate, photoluminescence of the MQWs on Si shows both comparable line widths and internal quantum efficiencies at room temperature. A specially engineered InP buffer with interlayers on a nanopatterned silicon substrate was used. Cross-sectional transmission electron microscopy reveals effective dislocation filtering by the three strained InGaAs interlayers. The high-quality quantum-well structure grown on the InP-on-Si template suggests great potential of integrating III-V photonic devices on the Si platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.