Abstract

Previous studies demonstrated that dysfunctional yeast proteasomes accumulate in the insoluble protein deposit (IPOD), described as the final deposition site for amyloidogenic insoluble proteins and that this compartment also mediates proteasome ubiquitination, a prerequisite for their targeted autophagy (proteaphagy). Here, we examined the solubility state of proteasomes subjected to autophagy as a result of their inactivation, or under nutrient starvation. In both cases, only soluble proteasomes could serve as a substrate to autophagy, suggesting a modified model whereby substrates for proteaphagy are dysfunctional proteasomes in their near-native soluble state, and not as previously believed, those sequestered at the IPOD. Furthermore, the insoluble fraction accumulating in the IPOD represents an alternative pathway, enabling the removal of inactive proteasomes that escaped proteaphagy when the system became saturated. Altogether, we suggest that the relocalization of proteasomes to soluble aggregates represents a general stage of proteasome recycling through autophagy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.