Abstract

Active matrix Gla protein (MGP), a potent inhibitor of calcification in large arteries, protects against macrovascular complications. Recent studies suggested that active MGP helps maintaining the integrity of the renal and myocardial microcirculation, but its role in preserving the retinal microcirculation remains unknown. In 935 randomly recruited Flemish participants (mean age, 40.9 years; 50.3% women), we measured plasma desphospho-uncarboxylated MGP (dp–ucMGP), a marker of poor vitamin K status using an ELISA-based assay at baseline (1996–2010) and retinal microvascular diameters using IVAN software (Vasculomatic ala Nicola, version 1.1) including the central retinal arteriolar (CRAE) and venular (CRVE) equivalent and the arteriole-to-venule ratio (AVR) at follow-up (2008–2015). CRAE (P = 0.005) and AVR (P = 0.080) at follow-up decreased across tertiles of the dp–ucMGP distribution. In unadjusted models, for a doubling of dp–ucMGP at baseline, CRAE and AVR at follow-up respectively decreased by 1.40 µm (95% confidence interval [CI], 0.32 to 2.48; P = 0.011) and 0.006 (CI, 0.001 to 0.011; P = 0.016). In multivariable-adjusted models accounting for sex, baseline characteristics and follow-up duration, these estimates were −1.03 µm (CI, −1.96 to −0.11; P = 0.028) and −0.007 (CI, −0.011 to −0.002; P = 0.007). Additional adjustment for changes from baseline to follow-up in major baseline characteristics yielded as estimates −0.91 µm (CI, −1.82 to −0.01; P = 0.048) and −0.006 (95% CI, −0.011 to −0.001; P = 0.014), respectively. Circulating inactive dp–ucMGP is a long-term predictor of smaller retinal arteriolar diameter in the general population. Our observations highlight the possibility that vitamin K supplementation might promote retinal health.

Highlights

  • Active matrix Gla protein (MGP), a potent inhibitor of calcification in large arteries, protects against macrovascular complications

  • Our study is the first longitudinal population survey assessing the association of retinal microvascular traits with circulating levels of dp-ucMGP measured approximately one decade before retinal photography

  • Our findings are compatible with studies showing expression of Matrix Gla protein (MGP) in capillaries and small arterioles[15] and in particular in the glaucoma-relevant tissues of the eye and the retinal microvasculature[16,17,18,19,20]

Read more

Summary

Introduction

Active matrix Gla protein (MGP), a potent inhibitor of calcification in large arteries, protects against macrovascular complications. Recent studies suggested that active MGP helps maintaining the integrity of the renal and myocardial microcirculation, but its role in preserving the retinal microcirculation remains unknown. A naturally fluorescent MGP transgenic mouse model demonstrated MGP expression in the retinal vasculature[20]. In view of these observations[13,14,15,16,17,18,19,20], we hypothesised that retinal microvascular traits, as exemplified by retinal arteriolar and venular diameters, might be associated with inactive dp-ucMGP. We assessed in the Flemish Study on Environment, Genes, and Health Outcomes (FLEMENGHO)[11,14] whether circulating inactive dp-ucMGP predicted retinal microvascular diameters 11 years after the measurement of the biomarker

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call