Abstract
Studies of age-related changes in learning and memory often focus on hippocampus-sensitive tasks and reveal age-associated impairments across numerous species and contexts. However, cognitive decline with advanced age is not all-encompassing; for example, forms of striatum-sensitive learning are conserved or enhanced with age. Under certain conditions, hippocampal and striatal memory systems function in opposition. In young adult rodents, disruption of one structure can enhance learning on tasks dependent on the other, suggesting that competitive interactions across memory systems contribute to learning and memory abilities. This report examines whether imbalances across memory systems might contribute to cognitive aging. We inactivated the striatum using central infusions of lidocaine (sodium channel blocker) prior to hippocampus-sensitive spatial (place) training in young (3-4-month-old) and old (24-25-month-old) F344 male rats. Consistent with prior work, vehicle-infused old rats exhibited place learning impairments relative to young rats. Additionally, striatal inactivation enhanced learning in old rats, but not young rats, abolishing the age-related impairment. These findings suggest that age-related declines in learning tasks thought to engage the hippocampus may stem from exaggerated interference from other memory systems and that interventions to target the striatum may reverse some age-related learning decrements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.