Abstract

The KlPDA1 gene, encoding the E1alpha subunit of the mitochondrial pyruvate-dehydrogenase (PDH) complex was isolated from a Kluyveromyces lactis genomic library by screening with a 1.1 kb internal fragment of the Saccharomyces cerevisiae PDA1 gene. The predicted amino acid sequence encoded by KlPDA1 showed 87% similarity and 79% identity to its S. cerevisiae counterpart. Disruption of KIPDA1 resulted in complete absence of PDH activity in cell extracts. The maximum specific growth rate on glucose of null mutants was 3.5-fold lower than that of the wild-type, whereas growth on ethanol was unaffected. Wild-type K. lactis CBS 2359 exhibits a Crabtree-negative phenotype, i.e. no ethanol was produced in aerobic batch cultures grown on glucose. In contrast, substantial amounts of ethanol and acetaldehyde were produced in aerobic cultures of an isogenic Klpda1 null mutant. A wild-type specific growth rate was restored after introduction of an intact KlPDA1 gene but not, as previously found for S. cerevisiae pda1 mutants, by cultivation in the presence of leucine. The occurrence of aerobic fermentation and slow growth of the Klpda1 null mutant indicate that, although present, the enzymes of the PDH bypass (pyruvate decarboxylase, acetaldehyde dehydrogenase and acetyl-CoA synthetase) could not efficiently replace the PDH complex during batch cultivation on glucose. Only at relatively low growth rates (D = 0.10 h(-1)) in aerobic, glucose-limited chemostat cultures, could the PDH bypass completely replace the PDH complex, thus allowing fully respiratory growth. This resulted in a lower biomass yield [g biomass (g glucose)-1] than in the wild-type due to a higher consumption of ATP in the PDH bypass compared to the formation of acetyl-CoA via the PDH complex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call