Abstract

The rate of inactivation of the voltage-dependent Ba2+ current in dissociated neurons from the snail Helix aspersa was found to be modulated by phosphorylation. Conditions were chosen such that the most likely mechanism of inactivation of the Ba2+ current was a voltage-dependent/calcium-independent inactivation process. If adenosine-triphosphate (ATP) was not included in the patch electrode filling solution, or if alkaline phosphatase was added, the Ba2+ current rapidly ran down and the rate of inactivation greatly increased with time. Dialysis with either ATP gamma S or the phosphatase inhibitor okadaic acid (OA) either enhanced the amplitude or greatly reduced the rate of run-down of the Ba2+ current (depending upon the presence of ATP), as well as reducing the rate of inactivation. However, dialysis with either the catalytic subunit of the cyclic-adenosine-mono-phosphate-dependent protein kinase (cAMP-PK), a synthetic peptide inhibitor of this enzyme, or staurosporine (a potent inhibitor of protein kinase C), did not have any significant effect on the amplitude or kinetics of the Ba2+ current. Surprisingly, dialysis with a peptide inhibitor (CKIP) of the Ca2+/calmodulin-dependent protein kinase II (Ca(2+)-CaM-PK) significantly reduced the rate of inactivation of this current. These results suggest that phosphorylation may exert its effect by modulating the gating properties of the Ca2+ channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call